PX4 User Guide
  • Introduction
  • Getting Started
    • Basic Concepts
    • Vehicles/Frames
    • Flight Controllers
    • Sensors
    • Radio Systems
    • Flight Modes
    • Vehicle Status Notifications
      • LED Meanings
      • Tune/Sound Meanings
      • Preflight Checks
    • Payloads & Cameras
    • Flight Reporting
  • Basic Assembly
    • Mounting the Flight Controller
    • Mounting the GPS/Compass
    • Vibration Isolation
    • Cable Wiring
    • CUAV Pixhawk V6X Wiring QuickStart
    • CUAV V5+ Wiring Quickstart
    • CUAV V5 nano Wiring Quickstart
    • Holybro Pixhawk 6C Wiring Quickstart
    • Holybro Pixhawk 6X Wiring Quickstart
    • Holybro Pixhawk 5X Wiring Quickstart
    • Holybro Pixhawk 4 Wiring Quickstart - Discontinued
    • Holybro Pixhawk 4 Mini Wiring Quickstart - Discontinued
    • Holybro Durandal Wiring Quickstart
    • Holybro Pix32 v5 Wiring Quickstart
    • Cube Wiring Quickstart
    • Pixracer Wiring Quickstart
    • mRo (3DR) Pixhawk Wiring Quickstart
  • Standard Configuration
    • Firmware
    • Airframe
    • Sensor Orientation
    • Compass
    • Gyroscope
    • Accelerometer
    • Airspeed
    • Level Horizon Calibration
    • Radio Setup
    • Joystick Setup
    • Flight Modes
    • Battery
    • Safety
      • Failsafe Simulation
    • ESC Calibration
    • Actuators
    • Autotune
  • Vehicle Types & Setup
    • Multicopters
      • Multicopter Config/Tuning
        • MC Filter/Control Latency Tuning
        • MC PID Tuning (Manual/Basic)
        • MC PID Tuning Guide (Manual/Advanced)
        • MC Setpoint Tuning (Trajectory Generator)
          • MC Jerk-limited Type Trajectory
        • Multicopter Racer Setup
      • X500 v2 (Pixhawk 6C)
      • X500 v2 (Pixhawk 5X)
      • X500 (Pixhawk 4)
      • S500 V2 (Pixhawk 4)
      • DJI F450 (CUAV v5+)
      • DJI F450 (CUAV v5 nano)
      • QAV250 (Pixhawk4 Mini) - Discontinued
      • DJI F450 + RTK (Pixhawk 3 Pro)
      • QAV250 (Pixhawk Mini)
      • QAV-R 5" Racer (Pixracer)
      • Omnicopter
    • Planes
      • Fixed Wing Config/Tuning
        • Fixedwing PID Tuning Guide
        • Fixedwing Advanced Tuning Guide
        • Fixedwing Trimming Guide
      • Reptile Dragon 2 (ARK6X)
      • Turbo Timber Evolution (Pixhawk 4 Mini)
      • Wing Wing Z84 (Pixracer)
    • VTOL
      • VTOL Config/Tuning
        • QuadPlane Configuration
        • Back-transition Tuning
        • VTOL w/o Airspeed Sensor
        • VTOL Weather Vane
      • Standard VTOL
        • FunCub QuadPlane (Pixhawk)
        • Ranger QuadPlane (Pixhawk)
        • Falcon Vertigo QuadPlane (Dropix)
      • Tailsitter VTOL
        • Build: TBS Caipiroshka Tailsitter Build (Pixracer)
      • Tiltrotor VTOL
        • Build: Convergence Tiltrotor (Pixfalcon)
    • Airships (experimental)
    • Autogyros (experimental)
      • ThunderFly Auto-G2 (Holybro pix32)
    • Balloons (experimental)
    • Helicopter (experimental)
      • Helicopter Config/Tuning
    • Rovers (experimental)
      • Traxxas Stampede
    • Submarines (experimental)
      • BlueROV2
    • Airframes Reference
  • Flying
    • First Flight Guidelines
    • Flying 101
    • Missions
      • Package Delivery Mission
    • GeoFence
    • Safety Point Planning
    • Flight Modes
      • Position Mode (MC)
      • Altitude Mode (MC)
      • Manual/Stabilized Mode (MC)
      • Acro Mode (MC)
      • Orbit Mode (MC)
      • Position Mode (FW)
      • Altitude Mode (FW)
      • Stabilized Mode (FW)
      • Acro Mode (FW)
      • Manual Mode (FW)
      • Takeoff Mode
      • Land Mode
      • Return Mode
      • Hold Mode
      • Mission Mode
      • Follow Me Mode
      • Offboard Mode
    • Terrain Following/Holding
  • Flight Log Analysis
    • Log Analysis using Flight Review
    • Log Analysis using PlotJuggler
  • Advanced Configuration
    • Finding/Updating Parameters
    • Full Parameter Reference
    • ECL/EKF Overview & Tuning
    • Flight Termination Configuration
    • Bootloader Flashing onto Betaflight Systems
    • Land Detector Configuration
    • Prearm/Arm/Disarm Configuration
    • IMU Factory Calibration
    • Sensor Thermal Compensation
    • Compass Power Compensation
    • Advanced Controller Orientation
    • Static Pressure Buildup
    • Serial Port Configuration
    • MAVLink Telemetry (OSD/GCS)
    • PX4 Ethernet Setup
    • Bootloader Update
  • Hardware (Drones&Parts)
    • Complete Vehicles
      • ModalAI Starling
      • PX4 Vision Kit
      • MindRacer BNF & RTF
        • MindRacer 210
        • NanoMind 110
      • Holybro Kopis 2
      • Bitcraze Crazyflie 2.1
    • Flight Controllers (Autopilots)
      • Pixhawk Series
        • Silicon Errata
      • Pixhawk Standard Autopilots
        • CUAV Pixhawk V6X (FMUv6X)
        • Holybro Pixhawk 6X (FMUv6X)
        • Holybro Pixhawk 6C (FMUv6C)
        • Holybro Pixhawk 6C Mini(FMUv6C)
        • Holybro Pix32 v6 (FMUv6C)
        • Holybro Pixhawk 5X (FMUv5X)
        • Holybro Pixhawk 4 (FMUv5) - Discontinued
        • Holybro Pixhawk 4 Mini (FMUv5) - Discontinued
        • Drotek Pixhawk 3 Pro (FMUv4pro)
        • mRo Pixracer (FMUv4)
        • Hex Cube Black (FMUv3)
        • mRo Pixhawk (FMUv3)
        • Holybro Pixhawk Mini (FMUv3) - Discontinued
      • Manufacturer-Supported Autopilots
        • AirMind MindPX
        • AirMind MindRacer
        • ARK Electronics ARKV6X
        • CUAV X7
        • CUAV Nora
        • CUAV V5+ (FMUv5)
        • CUAV V5 nano (FMUv5)
        • CUAV Pixhack v3 (FMUv3)
        • CubePilot Cube Orange+ (CubePilot)
        • CubePilot Cube Orange (CubePilot)
        • CubePilot Cube Yellow (CubePilot)
        • Holybro Kakute H7v2
        • Holybro Kakute H7mini
        • Holybro Kakute H7
        • Holybro Durandal
        • Holybro Pix32 v5
        • ModalAI Flight Core v1
        • ModalAI VOXL Flight
        • ModalAI VOXL 2
        • mRobotics-X2.1 (FMUv2)
        • mRo Control Zero F7)
        • NXP RDDRONE-FMUK66 FMU
        • Sky-Drones AIRLink
        • SPRacing SPRacingH7EXTREME
        • ThePeach FCC-K1
        • ThePeach FCC-R1
      • Experimental Autopilots
        • BeagleBone Blue
        • Raspberry Pi 2/3 Navio2
        • Raspberry Pi 2/3/4 PilotPi
          • PilotPi with Raspberry Pi OS
          • PilotPi with Ubuntu Server
      • Discontinued Autopilots/Vehicles
        • Drotek Dropix (FMUv2)
        • Omnibus F4 SD
        • BetaFPV Beta75X 2S Brushless Whoop
        • Bitcraze Crazyflie 2.0
        • Aerotenna OcPoC-Zynq Mini
        • CUAV v5
        • Holybro Kakute F7 (Discontinued)
        • Holybro Pixfalcon
        • Holybro pix32 (FMUv2)
        • mRo AUAV-X2
        • 3DR Pixhawk 1
        • Snapdragon Flight
        • Intel® Aero RTF Drone (Discontinued)
      • Pixhawk Autopilot Bus (PAB) & Carriers
        • ARK Electronics Pixhawk Autopilot Bus Carrier
    • Flight Controller Peripherals
      • ADSB/FLARM (Traffic Avoidance)
      • Air Traffic Avoidance: ADSB/FLARM
      • Air Traffic Avoidance: UTM
      • Airspeed Sensors
        • TFSlot Airspeed Sensor
      • Barometers
      • Camera
      • Distance Sensors (Rangefinders)
        • Lightware SFxx Lidar
        • Ainstein US-D1 Standard Radar Altimeter
        • LeddarOne Lidar
        • Benewake TFmini Lidar
        • Lidar-Lite
        • TeraRanger
        • Lanbao PSK-CM8JL65-CC5
        • Avionics Anonymous Laser Altimeter UAVCAN Interface
      • ESCs & Motors
        • PWM ESCs and Servos
        • DShot ESCs
        • OneShot ESCs and Servos
        • DroneCAN ESCs
          • Zubax Telega
          • PX4 Sapog ESC Firmware
            • Holybro Kotleta
            • Zubax Orel
        • VESC
      • TBS Crossfire (CRSF) Telemetry
      • FrSky Telemetry
      • Gimbal (Mount) Configuration
      • GPS/Compass
        • ARK GPS
        • Holybro DroneCAN M8N GPS
        • LOCOSYS Hawk A1 GNSS
        • Hex Here2
        • Holybro M8N & M9N GPS
        • Sky-Drones SmartAP GPS
      • Grippers
        • Servo Gripper
      • Optical Flow
        • ARK Flow
        • PMW3901
        • PX4FLOW (Deprecated)
      • Precision Landing
      • Parachute
      • Power Modules/PDB
        • CUAV HV pm
        • CUAV CAN PMU
        • Holybro PM02
        • Holybro PM07
        • Holybro PM06 V2
        • Holybro PM02D (digital)
        • Holybro PM03D (digital)
        • Pomegranate Systems Power Module
        • Sky-Drones SmartAP PDB
      • Satellite Coms (Iridium/RockBlock)
      • Telemetry Radios
        • SiK Radio
          • RFD900 (SiK) Telemetry Radio
          • HolyBro (SIK) Telemetry Radio
        • Telemetry Wifi
          • ESP8266 WiFi Module
          • ESP32 WiFi Module
          • 3DR Telemetry Wifi (Discontinued)
        • Microhard Serial Telemetry Radio
          • ARK Electron Microhard Serial Telemetry Radio
          • Holybro Microhard P900 Telemetry Radio
        • CUAV P8 Telemetry Radio
        • HolyBro XBP9X - Discontinued
      • RTK GPS
        • ARK RTK GPS
        • RTK GPS Heading with Dual u-blox F9P
        • CUAV C-RTK
        • CUAV C-RTK2 PPK/RTK GNSS
        • CUAV C-RTK 9Ps
        • Femtones MINI2 Receiver
        • Freefly RTK GPS
        • Holybro H-RTK-F9P
        • Holybro H-RTK-M8P
        • Holybro H-RTK Unicore UM982 GPS
        • Locosys Hawk R1
        • Locosys Hawk R2
        • Septentrio AsteRx-RIB
        • Septentrio mosaic-go
        • Trimble MB-Two
        • CubePilot Here+ (Discontined)
      • Remote ID
      • Smart Batteries
        • Rotoye Batmon Battery Smartification Kit
      • Tachometers (Revolution Counters)
        • ThunderFly TFRPM01 Tachometer Sensor
      • I2C Peripherals
        • I2C bus accelerators
        • TFI2CADT01 I2C address translator
      • CAN Peripherals
      • DroneCAN Peripherals
        • PX4 DroneCAN Firmware
        • ARK CANnode
    • Companion Computers
      • Pixhawk + Companion Setup
        • RasPi Pixhawk Companion
      • Companion Computer Peripherals
      • Holybro Pixhawk RPI CM4 Baseboard
      • Auterion Skynode
      • Computer Vision
        • Obstacle Avoidance
        • Safe Landing
        • Collision Prevention
        • Path Planning Interface
        • Motion Capture (MoCap)
        • Visual Inertial Odometry (VIO)
          • Realsense T265 Tracking Camera (VIO)
      • Video Streaming
  • Development
    • Getting Started
      • Recommended Hardware/Setup
      • Toolchain Installation
        • MacOS Setup
        • Ubuntu Setup
        • Windows Setup
        • Visual Studio Code IDE
        • Other/Generic Tools
      • Building the Code
      • Writing your First Application
      • Application/Module Template
    • Concepts
      • PX4 Architecture
      • PX4 Flight Stack Architecture
        • Controller Diagrams
      • Events Interface
      • Flight Modes
      • Flight Tasks
      • Control Allocation
      • PWM limit state machine
      • System Startup
      • SD Card Layout
    • Simulation
      • jMAVSim Simulation
        • Multi-Vehicle Sim with JMAVSim
      • Gazebo Simulation
        • Vehicles
        • Multi-Vehicle Sim
      • Gazebo Classic Simulation
        • Vehicles
        • Worlds
        • Multi-Vehicle Sim
      • FlightGear Simulation
        • FlightGear Vehicles
        • Multi-Vehicle Sim with FlightGear
      • JSBSim Simulation
      • AirSim Simulation
      • Multi-Vehicle Simulation
      • Simulate Failsafes
      • HITL Simulation
      • Simulation-In-Hardware
    • Hardware
      • Flight Controller Reference Design
      • Manufacturer’s Board Support Guide
      • Flight Controller Porting Guide
        • PX4 Board Configuration (kconfig)
        • NuttX Board Porting Guide
      • Serial Port Mapping
      • Airframes
        • Adding a New Airframe
      • Device Drivers
      • Telemetry Radio
        • SiK Radio
      • Sensor and Actuator I/O
        • DroneCAN
        • I2C Bus
        • UART/Serial Ports
          • Port-Configurable Serial Drivers
      • RTK GPS (Integration)
    • Middleware
      • uORB Messaging
      • uORB Graph
      • uORB Message Reference
        • ActionRequest
        • ActuatorArmed
        • ActuatorControlsStatus
        • ActuatorMotors
        • ActuatorOutputs
        • ActuatorServos
        • ActuatorServosTrim
        • ActuatorTest
        • AdcReport
        • Airspeed
        • AirspeedValidated
        • AirspeedWind
        • AutotuneAttitudeControlStatus
        • BatteryStatus
        • ButtonEvent
        • CameraCapture
        • CameraStatus
        • CameraTrigger
        • CellularStatus
        • CollisionConstraints
        • CollisionReport
        • ControlAllocatorStatus
        • Cpuload
        • DebugArray
        • DebugKeyValue
        • DebugValue
        • DebugVect
        • DifferentialPressure
        • DistanceSensor
        • Ekf2Timestamps
        • EscReport
        • EscStatus
        • EstimatorAidSource1d
        • EstimatorAidSource2d
        • EstimatorAidSource3d
        • EstimatorBias
        • EstimatorBias3d
        • EstimatorEventFlags
        • EstimatorGpsStatus
        • EstimatorInnovations
        • EstimatorSelectorStatus
        • EstimatorSensorBias
        • EstimatorStates
        • EstimatorStatus
        • EstimatorStatusFlags
        • Event
        • FailsafeFlags
        • FailureDetectorStatus
        • FollowTarget
        • FollowTargetEstimator
        • FollowTargetStatus
        • GeneratorStatus
        • GeofenceResult
        • GimbalControls
        • GimbalDeviceAttitudeStatus
        • GimbalDeviceInformation
        • GimbalDeviceSetAttitude
        • GimbalManagerInformation
        • GimbalManagerSetAttitude
        • GimbalManagerSetManualControl
        • GimbalManagerStatus
        • GpioConfig
        • GpioIn
        • GpioOut
        • GpioRequest
        • GpsDump
        • GpsInjectData
        • Gripper
        • HealthReport
        • HeaterStatus
        • HomePosition
        • HoverThrustEstimate
        • InputRc
        • InternalCombustionEngineStatus
        • IridiumsbdStatus
        • IrlockReport
        • LandingGear
        • LandingGearWheel
        • LandingTargetInnovations
        • LandingTargetPose
        • LaunchDetectionStatus
        • LedControl
        • LogMessage
        • LoggerStatus
        • MagWorkerData
        • MagnetometerBiasEstimate
        • ManualControlSetpoint
        • ManualControlSwitches
        • MavlinkLog
        • MavlinkTunnel
        • Mission
        • MissionResult
        • ModeCompleted
        • MountOrientation
        • NavigatorMissionItem
        • NormalizedUnsignedSetpoint
        • NpfgStatus
        • ObstacleDistance
        • OffboardControlMode
        • OnboardComputerStatus
        • OrbTest
        • OrbTestLarge
        • OrbTestMedium
        • OrbitStatus
        • ParameterUpdate
        • Ping
        • PositionControllerLandingStatus
        • PositionControllerStatus
        • PositionSetpoint
        • PositionSetpointTriplet
        • PowerButtonState
        • PowerMonitor
        • PpsCapture
        • PwmInput
        • Px4ioStatus
        • QshellReq
        • QshellRetval
        • RadioStatus
        • RateCtrlStatus
        • RcChannels
        • RcParameterMap
        • Rpm
        • RtlTimeEstimate
        • SatelliteInfo
        • SensorAccel
        • SensorAccelFifo
        • SensorBaro
        • SensorCombined
        • SensorCorrection
        • SensorGnssRelative
        • SensorGps
        • SensorGyro
        • SensorGyroFft
        • SensorGyroFifo
        • SensorHygrometer
        • SensorMag
        • SensorOpticalFlow
        • SensorPreflightMag
        • SensorUwb
        • SensorSelection
        • SensorsStatus
        • SensorsStatusImu
        • SystemPower
        • TakeoffStatus
        • TaskStackInfo
        • TecsStatus
        • TelemetryStatus
        • TiltrotorExtraControls
        • TimesyncStatus
        • TrajectoryBezier
        • TrajectorySetpoint
        • TrajectoryWaypoint
        • TransponderReport
        • TuneControl
        • UavcanParameterRequest
        • UavcanParameterValue
        • UlogStream
        • UlogStreamAck
        • UwbDistance
        • UwbGrid
        • VehicleAcceleration
        • VehicleAirData
        • VehicleAngularAccelerationSetpoint
        • VehicleAngularVelocity
        • VehicleAttitude
        • VehicleAttitudeSetpoint
        • VehicleCommand
        • VehicleCommandAck
        • VehicleConstraints
        • VehicleControlMode
        • VehicleGlobalPosition
        • VehicleImu
        • VehicleImuStatus
        • VehicleLandDetected
        • VehicleLocalPosition
        • VehicleLocalPositionSetpoint
        • VehicleMagnetometer
        • VehicleOdometry
        • VehicleOpticalFlow
        • VehicleOpticalFlowVel
        • VehicleRatesSetpoint
        • VehicleRoi
        • VehicleStatus
        • VehicleThrustSetpoint
        • VehicleTorqueSetpoint
        • VehicleTrajectoryBezier
        • VehicleTrajectoryWaypoint
        • VtolVehicleStatus
        • Wind
        • YawEstimatorStatus
      • MAVLink Messaging
      • uXRCE-DDS (PX4-ROS 2/DDS Bridge)
    • Modules & Commands
      • Autotune
      • Commands
      • Communication
      • Controllers
      • Drivers
        • Airspeed Sensor
        • Baro
        • Distance Sensor
        • IMU
        • INS
        • Magnetometer
        • Optical Flow
        • Rpm Sensor
        • Transponder
      • Estimators
      • Simulations
      • System
      • Template
    • Debugging/Logging
      • FAQ
      • Consoles/Shells
        • MAVLink Shell
        • System Console
      • Debugging with GDB
        • SWD Debug Port
        • JLink Probe
        • Black Magic/DroneCode Probe
        • STLink Probe
        • Hardfault Debugging
      • Debugging with Eclipse
      • Failure Injection
      • Sensor/Topic Debugging
      • Simulation Debugging
      • Sending Debug Values
      • System-wide Replay
      • Profiling
      • Binary Size Profiling
      • Logging
      • Flight Log Analysis
      • ULog File Format
    • Tutorials
      • Long-distance Video Streaming
      • Connecting an RC Receiver on Linux
    • Advanced Topics
      • Parameters & Configs
      • Package Delivery Architecture
      • Computer Vision
        • Motion Capture (VICON, Optitrack, NOKOV)
      • Installing driver for Intel RealSense R200
      • Switching State Estimators
      • Out-of-Tree Modules
      • STM32 Bootloader
      • System Tunes
      • Advanced Linux Installation Cases
      • Windows Cygwin Toolchain Maintenance
      • Unsupported Developer Setup
        • CentOS Linux
        • Arch Linux
        • Windows VM Toolchain
        • Windows Cygwin Toolchain
        • Qt Creator IDE
    • Platform Testing and CI
      • Test Flights
        • Test MC_01 - Manual Modes
        • Test MC_02 - Full Autonomous
        • Test MC_03 - Auto Manual Mix
        • Test MC_04 - Failsafe Testing
        • Test MC_05 - Indoor Flight (Manual Modes)
      • Unit Tests
      • Continuous Integration
      • MAVSDK Integration Testing
      • ROS Integration Testing
      • Docker Containers
      • Maintenance
  • Drone Apps & APIs
    • Offboard Control from Linux
    • ROS
      • ROS 2
        • ROS 2 User Guide
        • ROS 2 Offboard Control Example
        • ROS 2 Multi Vehicle Simulation
      • ROS 1 with MAVROS
        • ROS/MAVROS Installation Guide
        • ROS/MAVROS Offboard Example (C++)
        • ROS/MAVROS Offboard Example (Python)
        • ROS/MAVROS Sending Custom Messages
        • ROS/MAVROS with Gazebo Classic Simulation
        • Gazebo Classic OctoMap Models with ROS 1
        • ROS/MAVROS Installation on RPi
        • External Position Estimation (Vision/Motion based)
    • DroneKit
  • Contribution (&Dev Call)
    • Dev Call
    • Support
    • Source Code Management
      • GIT Examples
    • Documentation
    • Translation
    • Terminology/Notation
    • Licenses
  • Releases
    • 1.14
    • 1.13
    • 1.12
Powered by GitBook
On this page
  • Multiple Vehicle with Gazebo Classic
  • Video: Multiple Multicopter (Iris)
  • Video: Multiple Plane
  • Video: Multiple VTOL
  • Build and Test (XRCE-DDS)
  • Multiple Vehicles with MAVROS and Gazebo Classic
  • Required
  • Build and Test
  • What's Happening?
  • Multiple Vehicles using SDF Models
  • Additional Resources
  1. Development
  2. Simulation
  3. Gazebo Classic Simulation

Multi-Vehicle Sim

PreviousWorldsNextFlightGear Simulation

Last updated 1 year ago

This topic explains how to simulate multiple UAV vehicles using and SITL (Linux only). A different approach is used for simulation with and without ROS.

Multiple Vehicle with Gazebo Classic

To simulate multiple iris or plane vehicles in Gazebo Classic use the following commands in the terminal (from the root of the Firmware tree):

Tools/simulation/gazebo-classic/sitl_multiple_run.sh [-m <model>] [-n <number_of_vehicles>] [-w <world>] [-s <script>] [-t <target>] [-l <label>]
  • <model>: The to spawn, e.g.: iris (default), plane, standard_vtol, rover, r1_rover typhoon_h480.

  • <number_of_vehicles>: The number of vehicles to spawn. Default is 3. Maximum is 254.

  • <world>: The that the vehicle should be spawned into, e.g.: empty (default)

  • <script>: Spawn multiple vehicles of different types (overriding the values in -m and -n). For example:

    -s "iris:3,plane:2,standard_vtol:3"
    • Supported vehicle types are: iris, plane, standard_vtol, rover, r1_rover typhoon_h480.

    • The number after the colon indicates the number of vehicles (of that type) to spawn.

    • Maximum number of vehicles is 254.

  • <target>: build target, e.g: px4_sitl_default (default), px4_sitl_nolockstep

  • <label> : specific label for model, e.g: rplidar

Each vehicle instance is allocated a unique MAVLink system id (2, 3, 4, etc.). MAVLink system id 1 is skipped in order to have consistency among . Vehicle instances are accessed from sequentially allocated PX4 remote UDP ports: 14541 - 14548 (additional instances are all accessed using the same remote UDP port: 14549).

:::note The 254-vehicle limitation occurs because mavlink MAV_SYS_ID only supports 255 vehicles in the same network (and the first one is skipped). The MAV_SYS_ID is allocated in the SITL rcS: :::

Video: Multiple Multicopter (Iris)

Video: Multiple Plane

Video: Multiple VTOL

Build and Test (XRCE-DDS)

Tools/simulation/gazebo-classic/sitl_multiple_run.sh can be used to simulate multiple vehicles connected via XRCE-DDS in Gazebo Classic.

To build an example setup, follow the steps below:

  1. Clone the PX4/Firmware code, then build the SITL code:

    cd Firmware_clone
    git submodule update --init --recursive
    DONT_RUN=1 make px4_sitl gazebo-classic
  2. Run Tools/simulation/gazebo-classic/sitl_multiple_run.sh. For example, to spawn 4 vehicles, run:

    ./Tools/simulation/gazebo-classic/sitl_multiple_run.sh -m iris -n 4

    :::note Each vehicle instance is allocated a unique MAVLink system id (2, 3, 4, etc.). MAVLink system id 1 is skipped. :::

  3. Run MicroXRCEAgent. It will automatically connect to all four vehicles:

    MicroXRCEAgent udp4 -p 8888

Multiple Vehicles with MAVROS and Gazebo Classic

This example demonstrates a setup that opens the Gazebo Classic client GUI showing two Iris vehicles in an empty world. You can then control the vehicles with QGroundControl and MAVROS in a similar way to how you would manage a single vehicle.

Required

Build and Test

To build an example setup, follow the step below:

  1. Clone the PX4/PX4-Autopilot code, then build the SITL code

    cd Firmware_clone
    git submodule update --init --recursive
    DONT_RUN=1 make px4_sitl_default gazebo-classic
  2. Source your environment:

    source Tools/simulation/gazebo-classic/setup_gazebo.bash $(pwd) $(pwd)/build/px4_sitl_default
    export ROS_PACKAGE_PATH=$ROS_PACKAGE_PATH:$(pwd):$(pwd)/Tools/simulation/gazebo-classic/sitl_gazebo
  3. Run launch file:

    roslaunch px4 multi_uav_mavros_sitl.launch

    :::note You can specify gui:=false in the above roslaunch to launch Gazebo Classic without its UI. :::

The tutorial example opens the Gazebo Classic client GUI showing two Iris vehicles in an empty world.

You can control the vehicles with QGroundControl or MAVROS in a similar way to how you would manage a single vehicle:

  • QGroundControl will have a drop-down to select the vehicle that is "in focus"

  • MAVROS requires that you include the proper namespace before the topic/service path (e.g. for <group ns="uav1"> you'll use /uav1/mavros/mission/push).

What's Happening?

For each simulated vehicle, the following is required:

  • :::note If you are using the same vehicle model, you don't need a separate xacro file for each vehicle. The same xacro file is adequate. :::

The launch file multi_uav_mavros_sitl.launchdoes the following,

  • loads a world in Gazebo Classic,

      <!-- Gazebo sim -->
      <include file="$(find gazebo_ros)/launch/empty_world.launch">
          <arg name="gui" value="$(arg gui)"/>
          <arg name="world_name" value="$(arg world)"/>
          <arg name="debug" value="$(arg debug)"/>
          <arg name="verbose" value="$(arg verbose)"/>
          <arg name="paused" value="$(arg paused)"/>
      </include>
  • for each vehicle,

    • creates urdf model from xacro, loads gazebo classic model and runs PX4 SITL app instance

        <!-- PX4 SITL and vehicle spawn -->
        <include file="$(find px4)/launch/single_vehicle_spawn.launch">
            <arg name="x" value="0"/>
            <arg name="y" value="0"/>
            <arg name="z" value="0"/>
            <arg name="R" value="0"/>
            <arg name="P" value="0"/>
            <arg name="Y" value="0"/>
            <arg name="vehicle" value="$(arg vehicle)"/>
            <arg name="rcS" value="$(find px4)/posix-configs/SITL/init/$(arg est)/$(arg vehicle)_$(arg ID)"/>
            <arg name="mavlink_tcp_port" value="4560"/>
            <arg name="ID" value="$(arg ID)"/>
        </include>
    • runs a mavros node

        <!-- MAVROS -->
        <include file="$(find mavros)/launch/px4.launch">
            <arg name="fcu_url" value="$(arg fcu_url)"/>
            <arg name="gcs_url" value=""/>
            <arg name="tgt_system" value="$(arg ID)"/>
            <arg name="tgt_component" value="1"/>
        </include>

    :::note The complete block for each vehicle is enclosed in a set of <group> tags to separate the ROS namespaces of the vehicles. :::

To add a third iris to this simulation there are two main components to consider:

  • add UAV3 to multi_uav_mavros_sitl.launch

    • duplicate the group of either existing vehicle (UAV1 or UAV2)

    • increment the ID arg to 3

    • select a different port for mavlink_udp_port arg for communication with Gazebo Classic

    • selects ports for MAVROS communication by modifying both port numbers in the fcu_url arg

  • create a startup file, and change the file as follows:

    • make a copy of an existing iris rcS startup file (iris_1 or iris_2) and rename it iris_3

    • MAV_SYS_ID value to 3

    • SITL_UDP_PRT value to match that of the mavlink_udp_port launch file arg

    • the first mavlink start port and the mavlink stream port values to the same values, which is to be used for QGC communication

    • the second mavlink start ports need to match those used in the launch file fcu_url arg

      :::note Be aware of which port is src and dst for the different endpoints. :::

Multiple Vehicles using SDF Models

This section shows how developers can simulate multiple vehicles using vehicle models defined in Gazebo Classic SDF files (instead of using models defined in the ROS Xacro file, as discussed in the rest of this topic).

The steps are:

  1. Install xmlstarlet from your Linux terminal:

    sudo apt install xmlstarlet
  2. Use roslaunch with the multi_uav_mavros_sitl_sdf.launch launch file:

    roslaunch multi_uav_mavros_sitl_sdf.launch vehicle:=<model_file_name>
    ```
    
    :::note
    Note that the vehicle model file name argument is optional (`vehicle:=<model_file_name>`); if omitted the [plane model](https://github.com/PX4/PX4-SITL_gazebo/tree/master/models/plane) will be used by default.
    :::

This method is similar to using the xacro except that the SITL/Gazebo Classic port number is automatically inserted by xmstarlet for each spawned vehicle, and does not need to be specified in the SDF file.

To add a new vehicle, you need to make sure the model can be found (in order to spawn it in Gazebo Classic), and PX4 needs to have an appropriate corresponding startup script.

  1. You can choose to do either of:

    • modify the single_vehicle_spawn_sdf.launch file to point to the location of your model by changing the line below to point to your model:

      $(find px4)/Tools/simulation/gazebo/sitl_gazebo-classic/models/$(arg vehicle)/$(arg vehicle).sdf

      :::note Ensure you set the vehicle argument even if you hardcode the path to your model. :::

    • copy your model into the folder indicated above (following the same path convention).

Additional Resources

@

@

@

:::note You will need to have installed the XRCE-DDS dependencies. For more information see: , for interfacing with ROS 2 nodes. :::

Build the micro xrce-dds agent and the interface package following the .

:::note The simulator startup script automatically assigns a to each vehicle. :::

Current

:::note At time of writing this is Ubuntu 18.04 with ROS Melodic/Gazebo 9. See also . :::

a clone of latest

Gazebo Classic model: This is defined as xacro file in PX4-Autopilot/Tools/simulation/gazebo-classic/sitl_gazebo-classic/models/rotors_description/urdf/<model>_base.xacro see . Currently, the model xacro file is assumed to end with base.xacro. This model should have an argument called mavlink_udp_port which defines the UDP port on which Gazebo Classic will communicate with PX4 node. The model's xacro file will be used to generate an urdf model that contains UDP port that you select. To define the UDP port, set the mavlink_udp_port in the launch file for each vehicle, see as an example.

PX4 node: This is the SITL PX4 app. It communicates with the simulator, Gazebo Classic, through the same UDP port defined in the Gazebo Classic vehicle model, i.e. mavlink_udp_port. To set the UDP port on the PX4 SITL app side, you need to set the SITL_UDP_PRT parameter in the startup file to match the mavlink_udp_port discussed previously, see . The path of the startup file in the launch file is generated based on the vehicle and ID arguments, see . The MAV_SYS_ID for each vehicle in the startup file, see , should match the ID for that vehicle in the launch file . This will help make sure you keep the configurations consistent between the launch file and the startup file.

MAVROS node (optional): A separate MAVROS node can be run in the launch file, see , in order to connect to PX4 SITL app, if you want to control your vehicle through ROS. You need to start a MAVLink stream on a unique set of ports in the startup file, see . Those unique set of ports need to match those in the launch file for the MAVROS node, see .

The vehicle argument is used to set the PX4_SIM_MODEL environment variable, which is used by the default rcS (startup script) to find the corresponding startup settings file for the model. Within PX4 these startup files can be found in the PX4-Autopilot/ROMFS/px4fmu_common/init.d-posix/ directory. For example, here is the plane model's . For this to work, the PX4 node in the launch file is passed arguments that specify the rcS file (etc/init.d/rcS) and the location of the rootfs etc directory ($(find px4)/build_px4_sitl_default/etc). For simplicity, it is suggested that the startup file for the model be placed alongside PX4's in PX4-Autopilot/ROMFS/px4fmu_common/init.d-posix/.

See for a description of the UDP port configuration.

See for more information about spawning the model with xacro.

See for more xacro models.

youtube
youtube
youtube
ROS 2 User Guide (PX4-ROS 2 Bridge)
instructions here
unique namespace
Gazebo Classic Simulation
MAVROS package
PX4/PX4-Autopilot
here
here
here
here
here
here
here
here
here
startup script
Simulation
URDF in Gazebo
RotorS
Gazebo Classic
vehicle type/model
world
init.d-posix/rcS
PX4 ROS/Gazebo development environment
namespaces